
This is the final draft of the following article:
Gaurav Pandey, Denis Kotkov, and Alexander Semenov. 2018. Recommending Serendipitous Items using Transfer Learning. In The 27th

ACM International Conference on Information and Knowledge Management (CIKM’18), October 22–26, 2018, Torino, Italy. ACM, New York,
NY, USA, 4 pages. doi: 10.1145/3269206.3269268

Recommending Serendipitous Items using Transfer Learning
Gaurav Pandey

University of Jyvaskyla
gaurav.g.pandey@jyu.fi

Denis Kotkov
University of Jyvaskyla

kotkov.denis.ig@gmail.com

Alexander Semenov
University of Jyvaskyla

alexander.v.semenov@jyu.fi

ABSTRACT
Most recommender algorithms are designed to suggest relevant
items, but suggesting these items does not always result in user sat-
isfaction. Therefore, the efforts in recommender systems recently
shifted towards serendipity, but generating serendipitous recom-
mendations is difficult due to the lack of training data. To the best of
our knowledge, there are many large datasets containing relevance
scores (relevance oriented) and only one publicly available dataset
containing a relatively small number of serendipity scores (serendip-
ity oriented). This limits the learning capabilities of serendipity
oriented algorithms. Therefore, in the absence of any known deep
learning algorithms for recommending serendipitous items and
the lack of large serendipity oriented datasets, we introduce SerRec
our novel transfer learning method to recommend serendipitous
items. SerRec uses transfer learning to firstly train a deep neural
network for relevance scores using a large dataset and then tunes
it for serendipity scores using a smaller dataset. Our method shows
benefits of transfer learning for recommending serendipitous items
as well as performance gains over the state-of-the-art serendipity
oriented algorithms.

KEYWORDS
Recommender System; Serendipity; Deep Learning; Transfer Learn-
ing
ACM Reference Format:
Gaurav Pandey, Denis Kotkov, and Alexander Semenov. 2018. Recommend-
ing Serendipitous Items using Transfer Learning. In The 27th ACM Inter-
national Conference on Information and Knowledge Management (CIKM
’18), October 22–26, 2018, Torino, Italy. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3269206.3269268

1 INTRODUCTION
Relevance oriented recommender algorithms often suggest items
that users are either already familiar with or would easily find them-
selves leading to low satisfaction [8]. To overcome this problem,
recommender algorithms should suggest serendipitous (i.e. rele-
vant, novel and unexpected) items, as these items are more likely to
broaden user preferences than relevant non-serendipitous ones [7].
While there has been a lot of work in the area of relevance oriented
recommendations including deep learning [1–3, 10], the efforts for
serendipitous recommendations are still very limited. To the best

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3269268

of our knowledge, deep learning or transfer learning methods have
not yet been explored for recommending serendipitous items.

Although there is abundant availability of big training datasets
with relevance scores, that can be used for relevance oriented algo-
rithms, there are not many training datasets available with serendip-
ity scores. To the best of our knowledge, Serepdipity-20181 is the
only such publicly available dataset, having comparatively a rather
small set of serendipity scores. One of the reasons for the lack of
large serendipity related datasets is the high level of difficulty to
collect user feedback regarding serendipity. This requires a lot of
effort from users as they need to answer many questions, and not
just provide scores for the items [7]. The unavailability of large
datasets with serendipity scores poses limitations on the training
of serendipity oriented recommender models.

Therefore, in the absence of large datasets and deep learning
algorithms focused on serendipity, we introduce SerRec: a transfer
learning method that trains a deep neural network for relevance
scores using a large dataset and then tunes it for serendipity scores
using a smaller dataset. This allows us to use the available training
data with relevance scores to benefit in the process of recommend-
ing serendipitous items.

Our method utilizes the neural collaborative filtering (NCF)
framework proposed by He et al [3]. They introduced an ensemble
of deep neural networks, originally proposed to learn a relevance
oriented recommender model. To benefit from transfer learning,
we firstly train the deep neural network ensemble layers using an
available large training dataset with relevance scores. Thereafter,
we tune the last layer of the network using a small dataset with
serendipity scores.

For our experiments, we have used Serendipity-2018, the only
publicly available dataset that has user feedback on serendipitous
items [7], that to the best of our knowledge has not been used so
far in studies. This dataset consists of a large collection of relevance
scores along with a smaller collection of serendipity scores. Ex-
perimenting with Serendipity-2018 is also novel in itself, because
serendipity oriented algorithms till now have been evaluated on
datasets where serendipity was measured using artificial serendip-
ity metrics based on assumptions regarding serendipity that might
not correspond to reality [7]. Our experimental results show the
benefits of transfer learning to train a serendipity oriented recom-
mender model and shows improvements over the state-of-the-art
serendipity oriented recommender models.

To summarize, this paper has the following key contributions:

• We propose the novel deep transfer learning method SerRec
for serendipitous recommendations.

• Our method utilizes the neural collaborative filtering frame-
work to utilize a large relevance score dataset along with a

1https://grouplens.org/datasets/serendipity-2018/

https://doi.org/10.1145/3269206.3269268
https://doi.org/10.1145/3269206.3269268
https://grouplens.org/datasets/serendipity-2018/

Figure 1: SerRec Architecture for Transfer Learning for
Serendipity using NCF framework [3]

smaller serendipity score dataset to enable high performance
serendipitous items recommendations.

• We evaluate SerRec and compare it with the-state-of-the-art
serendipity oriented algorithms on the first publicly available
serendipity oriented dataset Serendipity-2018.

2 OBJECTIVES
In this study, we aim to address mainly the following questions:

• How can we do transfer learning for serendipitous recom-
mendations using the relevance score training data?

• Does transfer learning help the serendipity oriented recom-
mender model?

• Howdoes ourmodel compare to the state-of-the-art serendip-
ity oriented models?

3 SERREC FRAMEWORK
In this section, we describe the SerRec methodology, its setup, uti-
lized datasets, baselines and the metric employed for comparisons.

3.1 Methodology
Consider a set of users as 𝑈 = {𝑢0, 𝑢1, ..., 𝑢𝑁 }, and a set of items
as 𝐼 = {𝑖0, 𝑖1, ..., 𝑖𝑀 }. We denote user-item interaction matrix as
𝑅 = {𝑟 𝑗𝑘 }, where 𝑟 𝑗𝑘 = 1 if user 𝑢 𝑗 rated item 𝑖𝑘 , 𝑗 ∈ {0, ..., 𝑁 }, 𝑘 ∈
{0, ..., 𝑀}, 𝑟 𝑗𝑘 ∈ {0, 1}. We denote user-item serendipity matrix
as 𝑆 = {𝑠 𝑗𝑘 }, where 𝑠 𝑗𝑘 = 1 if user 𝑢 𝑗 considers item 𝑖𝑘 , where
𝑗 ∈ {0, ..., 𝑁 }, 𝑘 ∈ {0, ..., 𝑀}, 𝑠 𝑗𝑘 ∈ {0, 1} as serendipitous.

Our goal is to learn a function 𝑠 𝑗𝑘 = 𝑓 (𝑗, 𝑘 | Θ), where 𝑠 𝑗𝑘 is
predicted serendipity score, andΘ is the vector of model parameters.
Here, 𝑗 and 𝑘 are the indexes of user and item matrices 𝑈 and 𝐼 ,
respectively. In order to find optimal parameters Θ for function

𝑓 (𝑗, 𝑘 | Θ) we need to minimize loss function L(𝑆, 𝑓 (𝑗, 𝑘 | Θ))
between actual and predicted serendipity scores.

As per He et al. [3], we represent function 𝑓 (𝑗, 𝑘 | Θ)) as neural
network, depicted in Figure 1. Input data for the neural network is
one-hot encoded user and item vectors: 𝒖 and 𝒊, |𝒖 | = 𝑁 + 1, | 𝒊 | =
𝑀 + 1. At first, we create vector embeddings 𝒑 and 𝒒 from vectors
𝒖 and 𝒊 respectively. These embeddings are created by learning
weights of two matrices:𝑊𝑈 and𝑊𝐼 ; multiplication of 𝒖 or 𝒊 to
𝑊𝑈 or𝑊𝐼 respectively would return 𝒑 and 𝒒 [3]. The sizes of these
embeddings 𝒑 and 𝒒 are 𝑛 and𝑚 respectively, where 𝑛 << 𝑁 + 1
and𝑚 << 𝑀 + 1.

Left-hand side of the neural network at Figure 1 is the layer
performing Generalized Matrix Factorization (GMF), i.e.:

𝑂𝐺𝑀𝐹 = (𝒑 ⊙ 𝒒) (1)
Moreover on the right hand side, Multi Layer Perceptron (MLP)

layers 1, 2, 3 and 4 contain dense layers:

𝑂𝑀𝐿𝑃𝑘 = 𝑅𝑒𝑙𝑈 (𝑊𝑘 ·𝑂𝑀𝐿𝑃𝑘−1 + 𝐵𝑘), 𝑘 ∈ {1, 2, 3, 4}, (2)
where 𝑂𝑀𝐿𝑃0 = [𝒑, 𝒒], i.e. vector built by concatenation of user
and item embeddings. Final layer of the network Neural Matrix Fac-
torization (NeuMF in Figure 1) implements the sigmoid activation
function:

𝑂𝑁𝑒𝑢𝑀𝐹 = 𝜎 (𝑊𝑂 · [𝑂𝐺𝑀𝐹 ,𝑂𝑀𝐿𝑃4] + 𝐵𝑂), (3)
where𝑊𝑂 and 𝐵𝑂 are weights and biases of the output layer.

We adopt cross entropy as the loss function:

L(𝑆, 𝑆) = −
∑

(𝑗,𝑘) ∈𝑆

(𝑠 𝑗𝑘 log 𝑠 𝑗𝑘 − (1 − 𝑠 𝑗𝑘) log(1 − 𝑠 𝑗𝑘)), (4)

where 𝑆 denotes observed part of serendipity matrix 𝑆 , and 𝑆 =

𝑓 (𝑗, 𝑘 | Θ) is the predicted serendipity.
Since serendipity scores dataset is small, we try to utilize transfer

learning by training a deep neural network using relevance scores.
First, we train the entire neural network framework on relevance
data 𝑅, and optimize the loss L(𝑅, 𝑅). After training the entire
neural network on relevance, we fix all weights except final one
(𝑊𝑂 , and 𝐵𝑂), and train it on serendipity matrix 𝑆 .

3.2 SerRec Setup
For our experiments we have used the Neural Collaborative Fil-
tering [3] implementation2 as discussed in section 3.1. As shown
in Figure 1, we used the training dataset with relevance scores to
train the GMF the MLP layers, where we used four layers in MLP.
Thereafter, the NeuMF layer is tuned using the serendipity tuning
dataset and final network is tested on the serendipity test dataset.
These datasets are explained in detail in Section 3.3.

For initial training on GMF and MLP, we used the user and
item vectors embeddings p and q, created using relevance training
dataset 𝑅 ⊂ 𝑅. We used a learning rate of 0.001 for GMF and 0.01 for
MLP, and trained both of them for 20 epochs while keeping a batch
size of 254. Also for both GMF andMLP, we used Adam optimization
algorithm [5]. Moreover, the available implementations for MLP
and GMF convert the available ratings into implicit feedback (rated
2https://github.com/hexiangnan/neural_collaborative_filtering

https://github.com/hexiangnan/neural_collaborative_filtering

or unrated) and for this chooses randomly four negative samples
(unrated) for each positive (rated) item for a user. We have used
these default settings.

Then using these trained GMF and MLP layers and keeping
the weights fixed in them, we tuned the NeuMF layer using the
serendipity tuning dataset. For this we used 𝑆 ⊂ 𝑆 , that contains
negative and positive samples on serendipity. We tuned it till con-
vergence using a learning rate of 0.001. We used this trained and
tuned network to predict the serendipity scores of the test dataset.

3.3 Datasets
To evaluate our algorithm and baselines, we employed Serendipity-
2018 dataset [7]. To the best of our knowledge, this is the only
publicly available dataset, which contains user feedback regarding
serendipity. This dataset contains 5-star scores (relevance scores)
users gave to movies in MovieLens3 and binary scores (serendipity
scores) indicating whether particular movies are serendipitous to
particular users. The dataset contains ten million relevance scores
and 2,150 serendipity scores.

The dataset contains different kinds of serendipity. In this study,
we target six kinds of serendipity that are missing the unexpect-
edness variation, which hurts user satisfaction: strict serendipity
(find), strict serendipity (implicit), strict serendipity (recommend),
motivational serendipity (find), motivational serendipity (implicit)
and motivational serendipity (recommend) [7]. We pre-process this
dataset and regard a movie serendipitous (positive sample) if it
is serendipitous according to at least one of these variations of
serendipity, and otherwise regard it as non-serendipitous (negative
example). The dataset contains 277 serendipitous user movie pairs
out of total 2,150.

For the Serendipity-2018 dataset, serendipity scores were ob-
tained in a survey taken by 481 users. In the survey, the authors
selected movies that were likely to be serendipitous to users, such
as unpopular movies that were given high scores [7]. To extend
serendipity scores for our study, we randomly selected five rele-
vance scores per user and assigned negative (non-serendipitous)
serendipity scores to them.We regarded thesemovies non- serendip-
itous, as they were unlikely to be serendipitous to users. In the best
case scenario, the chance of a movie to be serendipitous is 13%
(2772150 = 0.129). In our case, the chance of a movie to be serendip-
itous is much lower, since we did not control for popularity or
score. After attaching serendipity scores to randomly selected rele-
vance scores, the number of serendipity scores exceeded 4,555 with
277 scores indicating serendipitous movies and 4,278 indicating
non-serendipitous ones.

We split the dataset into three datasets: training, tuning and test.
Tuning and test datasets contain both relevance and serendipity
scores, while the training dataset only contains relevance scores.
The tuning datasets contains 75% of serendipity scores, while the
test dataset contains the remaining 25% of serendipity scores.

3.4 Baselines
We implemented the following baselines for comparison with our
transfer learning method SerRec:

3https://movielens.org/

• POP: We implemented popularity baseline that arranges
items according to the number of relevance scores received
by them in the training dataset, in the descending order.

• UNPOP: Unpopularity or inverse popularity baseline orders
items according to the number of relevance scores in the
ascending order.

• Random: This baseline orders the items randomly.
• SVD: Singular value decomposition [6] orders items accord-
ing to the predicted scores. SVD decomposes the user-item
matrix into two matrices using gradient decent. The gradient
decent algorithm minimizes the objective function, which is
the error between actual and predicted scores. Based on tun-
ing, we picked the parameters: feature number=200, learning
rate=10−5 and regularization term=0.1.

• SPR: Serendipitous Personalized Ranking is a serendipity-
oriented variation of SVD with the modified objective func-
tion [9]. SPR is a learning to rank algorithm, which maxi-
mizes the difference between scores of relevant and irrele-
vant items for each user and weights this distance based on
popularity of the irrelevant item. Based on tuning, we picked
the parameters: Bayesian loss function, 𝛼 = 0.4, feature num-
ber=200, learning rate=10−5 and regularization term=0.1.

• UAUM: Unexpectedness-Augmented Utility Model is also
a serendipity-oriented variation of SVD [12]. UAUM mini-
mizes the objective function, which is the error weighted
with the unexpectedness term. In our implementation, we
excluded unobserved scores due to the size of our dataset.
Based on tuning, we picked the parameters: feature num-
ber=200, learning rate=10−5 and regularization term=0.1.

• SerRec𝑁𝑜𝑇𝐿 : To see if transfer learning indeed helps in rec-
ommending serendipitous items, we trained the non transfer
learning version of our method, where we trained all the
layers in Figure 1 using only serendipity scores from tuning
dataset.

We used the following procedure to evaluate our baseline al-
gorithms: (1) we trained the baselines on relevance scores of the
training dataset, (2) we tuned the parameters of the baselines on
serendipity scores of the tuning dataset, (3) we trained the baselines
with the tuned parameters on relevance scores of training and tun-
ing datasets combined and (4) we evaluated the trained baselines on
serendipity scores of the test dataset. We did not train the baselines
directly on the serendipity scores, as Serendipity-2018 does not
contain enough serendipity scores for training the algorithms.

3.5 Metric
To compare the serendipitous item recommendation performance of
SerRec against the baselines on the serendipity test set, we employed
the standard retrieval metric NDCG@1-10 (normalized discounted
cumulative gain) [4]. While NDCG computation typically utilizes
the relevance scores of items in a ranking, we used the available
serendipity scores.

4 RESULTS
Table 1 compares the serendipitous recommendation performance
of SerRec against the baselines using NDCG@1-10. The following
observations can be made from the results:

https://movielens.org/

Table 1: Serendipity Ranking Performance Comparison of SerRec

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10
POP 0.0303 0.0606 0.0606 0.0909 0.1146 0.1948 0.2518 0.2994 0.3550 0.4078
Random 0.0909 0.1969 0.3262 0.3895 0.4248 0.4529 0.5036 0.5339 0.5639 0.5674
SVD 0.2121 0.3484 0.4035 0.4499 0.4981 0.5298 0.5643 0.6086 0.6218 0.6281
UAUM 0.3333 0.4696 0.4765 0.5117 0.5511 0.5900 0.5900 0.6336 0.6623 0.6749
UNPOP 0.3636 0.4393 0.5017 0.5651 0.6478 0.6633 0.6849 0.6849 0.7040 0.7040
SPR 0.3636 0.5000 0.5678 0.6230 0.6731 0.6944 0.7268 0.7369 0.7369 0.7369
SerRec𝑁𝑜𝑇𝐿 0.2727 0.4091 0.5420 0.6490 0.6960 0.7135 0.7135 0.7236 0.7236 0.7236
SerRec 0.4848 0.5455 0.6269 0.6505 0.6907 0.7186 0.7363 0.7452 0.7614 0.7614

(1) We see that SerRec outperforms all the baselines algorithms
at all the NDCG metrics, only except at NDCG@5 where
SerRec𝑁𝑜𝑇𝐿 is the best performing algorithm.

(2) For some metrics SerRec𝑁𝑜𝑇𝐿 is the second best algorithm
and SPR the third best, while for other metrics it is the other
way round. They are followed by UNPOP, UAUM, SVD, Ran-
dom and POP in this particular order.

(3) We also see the benefits of transfer learning since SerRec
outperforms SerRec𝑁𝑜𝑇𝐿 for most of the metrics.

(4) We observe that popularity of the items is working against
the serendipity because UNPOP shows decent performance
whereas POP is the worst (even worse than Random).

(5) As expected, serendipity oriented algorithms SPR and UAUM
outperform the relevance oriented SVD.

5 DISCUSSION
Our results mostly corresponded to our expectations and the lit-
erature on serendipity in recommender systems, i.e.: a) transfer
learning improves serendipity (observation 3), b) serendipity ori-
ented recommendation algorithms outperform relevance oriented
ones (observation 5) [9, 12] and c) popularity baseline has the
lowest serendipity [8]. Our unexpected finding was that the non-
personalized algorithm UNPOP outperforms some personalized
algorithms (observation 2), which emphasizes the importance of
popularity factor for suggesting serendipitous items. This might
suggest that popularity is the most important factor for suggesting
serendipitous items and that the traditional artificial serendipity
metrics [11] reflect the real world scenario. However, answering
these questions is beyond research conducted in this paper.

The limitations are mostly caused by the lack of publicly avail-
able datasets containing the necessary data. The dataset contains
a relatively small number of serendipitous scores. To increase the
number of these scores, wemarked some items as non-serendipitous
for some users. Although, as we explained in Section 3.3, the chance
of the mistake is rather small, some items could have been serendip-
itous to users, while being marked as non-serendipitous ones.

The performance of our approach can be improved with a differ-
ent configuration of parameters. We used arbitrary learning rate
for training GMF and MLP layers, just considering that the loss
function should converge (see Section 3.2). We trained them for a
limited number of epochs, used the default number of four negative
samples per positive sample and also used the default number of
four layers in MLP. It is highly probable that further tuning of such
parameters would result in further performance gains for SerRec.

6 CONCLUSION
This paper presents SerRec, a novel approach to use deep neural
networks and transfer learning to generate serendipitous recom-
mendations. We employed the Neural Collaborative filtering [3]
framework, that we train using a large dataset with relevance scores
and then tune using a smaller serendipity oriented dataset. Our
approach shows the benefit of transfer learning and improvements
over the state-of-the-art serendipity oriented baselines.

In future work, we would like to explore further tuning of the
hyper-parameters (number of layers, epochs, etc) of the utilized
deep neural networks, to achieve additional performance gains.

ACKNOWLEDGMENTS
The research was supported by KAUTE Foundation and the Euro-
pean Office of Aerospace Research and Development (Grant No
FA9550-17-1-0030)

REFERENCES
[1] Oren Barkan and Noam Koenigstein. 2016. Item2Vec: Neural Item Embedding

for Collaborative Filtering.. In MLSP. 1–6.
[2] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,

Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in Your Inbox:
Product Recommendations at Scale. In SIGKDD. 1809–1818.

[3] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. 173–182.

[4] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR Evaluation Methods for Retriev-
ing Highly Relevant Documents. In SIGIR. ACM, New York, NY, USA, 41–48.

[5] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[6] Yehuda Koren and Robert Bell. 2015. Advances in collaborative filtering. In
Recommender systems handbook. Springer, 77–118.

[7] Denis Kotkov, Joseph A. Konstan, Qian Zhao, and Jari Veijalainen. 2018. Investi-
gating Serendipity in Recommender Systems Based on Real User Feedback. In
Proceedings of SAC 2018: Symposium on Applied Computing. ACM.

[8] Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. 2016. A survey of serendip-
ity in recommender systems. Knowledge-Based Systems 111 (2016), 180–192.

[9] Qiuxia Lu, Tianqi Chen, Weinan Zhang, Diyi Yang, and Yong Yu. 2012. Serendipi-
tous Personalized Ranking for Top-N Recommendation. In Proceedings of the The
IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent
Agent Technology, Vol. 1. IEEE Computer Society, 258–265.

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In NIPS. 3111–3119.

[11] Tomoko Murakami, Koichiro Mori, and Ryohei Orihara. 2008. Metrics for Eval-
uating the Serendipity of Recommendation Lists. In Annual Conference of the
Japanese Society for Artificial Intelligence.

[12] Qianru Zheng, Chi-Kong Chan, and Horace H.S. Ip. 2015. An Unexpectedness-
Augmented Utility Model for Making Serendipitous Recommendation. In Ad-
vances in Data Mining: Applications and Theoretical Aspects. Vol. 9165. Springer
International Publishing, 216–230.

	Abstract
	1 Introduction
	2 Objectives
	3 SerRec Framework
	3.1 Methodology
	3.2 SerRec Setup
	3.3 Datasets
	3.4 Baselines
	3.5 Metric

	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

