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ABSTRACT
Related item recommendations have a long history in recommender
systems, but they tend to be a static list of similar items with respect
to a target item of interest without any support of user control. In
this paper, we propose ClusterExplorer, a novel approach for en-
abling user control over related recommendations. The approach
allows users to explore the latent space of user-item interactions
through controlling related recommendations. We evaluated Clus-
terExplorer in the book domain with 42 participants recruited in a
public library and found that our approach has higher user satisfac-
tion of browsing items and is more helpful in finding interesting
items compared to traditional related item recommendations.
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1 INTRODUCTION
Related item recommendations are a list of items similar to the
target item typically shown to the user on the item page. These
recommendations have a long history in recommender systems
and have been adopted by many popular e-commerce websites,
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such as Amazon (“Customers who viewed this item also viewed”),
LinkedIn (“Similar Jobs”) and Quora (“Related Questions”). Related
recommendations are the main source of recommendations for
many users [12].

Traditionally, related recommendations are static without any
support of user control, while it has been shown that users prefer
to have control over recommendations [5]. One of the ways to pro-
vide users with more control is through critiquing [3]. Critiquing
recommender systems use item attributes to provide control [11].
For example, in a recommender system that suggests laptops, the
user can specify if they want to see cheaper models or laptops
with bigger screens. However, these systems require rich metadata
regarding each item, for example, laptop prices, screen sizes and
other characteristics, which is labor-intensive. One way of miti-
gating this problem is to use keywords. For example, MovieTuner
utilizes keyword submissions, text based reviews and ratings users
assigned to movies to automatically generate critiques in the movie
domain [11].

Another way to provide users with control over recommenda-
tions is to let them navigate in the latent space retrieved from the
matrix factorization (MF) algorithm [6]. For example, the MovieEx-
plorer system allows users to explore a latent space retrieved from
MF by examples in the movie domain [10]. In this system, users
iteratively specify movies that they find interesting. In each itera-
tion, the system navigates the user in the latent space based on user
feedback by showing a set of movies similar to those picked in the
previous iterations. Another example is the choice-based system
[8], which asks the user to iteratively indicate their preference for
items from the extremes of each latent factor, positions them in the
latent space based on the received feedback and recommends items
closest to the user position.

In this paper, we design ClusterExplorer1, a novel approach to
related recommendations, which allows users to use critiques for
navigation in the latent space based on user-item interactions. Since
latent factors are not interpretable [8], to generate critiques, we
apply MF to user-item interactions, retrieve latent space and cluster
items in this space. Each cluster corresponds to a critique and the
similarity between the item representation and the cluster centroid
corresponds to the intensity, with which the critique applies to the
item. If the metadata is missing, the clusters are described by an
1The current version of ClusterExplorer is available at
recommendabook.me/clusterexplorer
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expert, which is not as labor-intensive as annotating each item.
If the metadata is poor, for example, tags only (our case), cluster
descriptions can also be generated automatically. In this paper, we
implement both versions of our approach: automatically generated
descriptions and descriptions edited by an expert. We implement
an application in the book domain and evaluate it in a within sub-
ject experiment with 42 participants. Our research questions are
as follows: (RQ1) Do users understand how their actions affect rec-
ommended items in ClusterExplorer? (RQ2) Does ClusterExplorer
improve user experience of related item recommendations?

Similar to MovieTuner in prior work [11], our approach allows
users to indicate critiques that they want to see with different inten-
sity in the list of related recommendations. In MovieTuner, these
critiques are based on item tags enriched with item metadata and
user-item interactions, while in ClusterExplorer, critiques are based
on clusters retrieved from latent space generated based on only
user-item interactions. Our approach is also similar to MovieEx-
plorer [10] and the choice-based system [8], as it allows users to
navigate in the latent space, but it is different from these systems
in the navigation process. ClusterExplorer allows users to control
related recommendations with critiques.

We found that most users understand how their actions affect
recommendations in ClusterExplorer. We also found that our ap-
proach has higher user satisfaction of browsing books and is more
helpful in finding interesting books to read compared to traditional
related recommendations.

The contributions of this paper are as follows: (1) we present
a novel approach to related recommendations and a novel user
interface, (2) we evaluate our approach with real users in terms of
different metrics, such as utility, serendipity and user satisfaction,
and (3) we evaluate two versions of our approach and demonstrate
that it improves traditional related item recommendations.

2 APPLICATION DESIGN
The application of our approach is implemented in the book domain,
where the user chooses a book and the application recommends
books related to the chosen one. The user can make this list also
related to a particular critique, which is called topic in the user
interface. The process is described in Figure 1.

Let us assume that the dataset contains 10 books represented
as points in a two-dimensional space. Books form three clusters:
drama, fantasy and sci-fi (Figure 1(b)). Each cluster corresponds
to a topic in the user interface (on the left in Figure 1(a)), which
is described with keywords. First, the user chooses any book they
think about at the moment to start exploration. In our example, it
is Harry Potter (Figure 1(a)). The application displays a number of
books (on the right) and topics (on the left) related to Harry Potter.
By choosing the book, the user locates their exploration point to
the position of Harry Potter in the two-dimensional space (Figure
1(b)). If the user decides to continue exploring, they can either (1)
choose a different book by typing its title to the search field or by
selecting a book from the list of relevant books (“Show related”),
or (2) adjust the list of related books with topics (“More like this”).
In our example, the user decides to add more drama by hitting the
“More like this” button. Their exploration point thenmoves closer to

the drama cluster (Figure 1(d)), which updates their nearest books
(Figure 1(c)).

3 DATASET
Our dataset was provided to us by the Vantaa Ciry Library. The
original dataset contained 1,550,695 loans performed between Janu-
ary 8, 2016 and December 10, 2017 by 57,118 users to 790,653 items,
where an item is a product offered by the library, such as a book,
CD or DVD. To preprocess the dataset, we first removed the items
that were not books. The remaining data consisted of 546,378 books,
54,917 users and 1,195,165 loans. Second, we removed duplicates
and books that were loaned less than 20 times. The resulting dataset
consisted of 12,885 books, 47,087 users and 796,529 loans.

4 GENERATING LATENT SPACE
We model books as points in the latent space and cluster them.
ClusterExplorer shows n-nearest neighbors of the user exploration
point. The exploration point moves closer to a particular cluster
centroid, as the user hits “More like this” in the user interface
(Figure 1).

To generate latent factors, we use matrix factorization (MF), the
common algorithm used in recommender systems [6]. MF decom-
poses user item matrix into two lower dimensionality matrices,
where one matrix represents users and another – items. For our
experiments, we only consider the item matrix, which corresponds
to the latent space. We pick the following MF implementation: [6],
as it is designed for implicit data and commonly used in the industry
[1].

To make sure, that generated latent factors are meaningful: (1)
we split the dataset into test and training datasets. The test dataset
contains 30% last user loans, while the training dataset contains
the rest of the loans, (2) we perform 3-fold cross validation based
on the training dataset to tune MF (find the most efficient hyper
parameters), (3) we train MF on the training dataset and compare
its performance with that of baseline algorithms on the test dataset,
(4) we train MF on the whole dataset and retrieve the latent factors
(item matrix) for clustering.

To tune MF, we used hill climbing (HC) [9], which is a local
search algorithm. It starts with an arbitrary solution of the problem,
incrementally changes the solution, compares the results and either
accepts the new solution and starts the next iteration or keeps look-
ing for a better solution. Based on our tuning phase, HC detected
the following most efficient parameters for MF: number of latent
factors: 650, regularization term: 6, number of iterations: 3 (with
the increase of iteration number, the performance drops).

To assess the quality of latent factors generated by MF, we com-
pared its performance with that of the following baseline algo-
rithms: (a) Random – orders books randomly, (b) POP – orders
books according to the number of loans these books received in the
dataset and IBCF – item-based collaborative filtering [2].

To measure performance of the algorithms, we picked normal-
ized discounted cumulative gain (NDCG) [7], as this measure is
commonly used for ranking systems and it takes into account the
order of recommended items. The values of NDCG@5 were as fol-
lows: Random: 0.0007, POP: 0.0168, IBCF: 0.0692 and MF: 0.0938.
For lists of other lengths the trend was the same. The low values of
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(d) The exploration point moves closer to the drama cluster

Figure 1: Application design

NDCG for all the algorithms are related to the low density of the
dataset (0.13%) and the evaluation protocol (the algorithms ranked
books from the whole catalog). Based on the obtained results, MF
outperformed other algorithms.

5 CLUSTERING
The goal of clustering in our case was not to detect all the books
belonging to a particular topic, but to detect points (centroids)
surrounded by books of the same topic, as we then use these points
to navigate in the latent space. To cluster books, we used k-means,
which requires the number of clusters (k) to be set. We gradually
increased k and measured WCSS (within-cluster sums of squares)
and Silhouette index (Figure 2). Based on the results, we set the
number of clusters to 400. Although each cluster had different
books, some clusters had very similar themes. For example, two
clusters that include different books about Donald Duck.

To remove similar clusters, we clustered centroids of the 400
obtained clusters with DBSCAN and extracted keywords of 5 books

nearest to each centroid. For centroids that fall into the same cluster,
we calculated Jaccard similarity in term of keywords and removed
centroids that were very similar to each other in terms of this simi-
larity measure. The similarity threshold has been set manually. This
resulted in 378 clusters for the automatically generated application.
To generate description for each cluster, we needed to select the
most representative keywords of a cluster centroid, while taking
into account popularity of each keyword. We therefore selected 5
books nearest to the cluster centroid, extracted keywords of each
of these books, merged them into a single document and ordered
them based on their tf-idf scores. Top 5 keywords of each cluster de-
scribed the corresponding critique in the user interface. We picked
only 5 most representative keywords and books, as they fit well in
the user interface (Figure 1) and represent the topic of books that
surround a cluster centroid.

For the expert edited application, we asked a library expert to
remove clusters, where the 5 books nearest to the cluster centroid
were a mix of different themes, for example travel guides mixed
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Figure 2: Cluster metrics

with children’s literature. We also asked the expert to remove simi-
lar clusters that have the same theme and edit the top 5 keywords
of each cluster. This resulted in 320 clusters. Overall, the two appli-
cations had an overlap of 308 clusters with 2.7 common keywords
per cluster on average.

6 USER EXPERIMENT
In our user experiment, we evaluated the following three applica-
tions:

• Expert edited (EE) application. The interface of the applica-
tion is depicted in Figure 1. The 320 selected clusters corre-
spond to critiques (topics in the user interface), while the
top 5 keywords correspond to descriptions of these critiques.
The user can see the 5 books nearest to the cluster centroid
by hovering over the crtique. The user can also see the book
keywords by hovering over a book. The critiques and key-
words for this application are generated by the algorithm
and then edited by the library expert.

• Automatically generated (AG) application. The application
has the same user interface as EE, but different input data.
Critiques (based on 378 clusters) and keywords of this appli-
cation are generated by the algorithm, but not edited by the
library expert.

• Baseline (B) application. The interface of this application is
missing critiques (on the left in Figure 1) (traditional related
item recommendations). The book vectors are the same as
in EE and AG.

In the related books section of the application (Figure 1), each
application displays 10 books most similar to the exploration point,
where the similarity is based on cosine similarity between the book
vector and the exploration point. We picked cosine similarity, as
it was the most descriptive measure in our pilot experiment. The
exploration point does not rotate, but moves in Euclidean space for
convenience.

As the target audience for our approach are Finnish library users,
we recruited participants in the main hall of the Turku City Library.

For participation in the experiment, we gave each participant a
voucher, which allowed them to get a cup of coffee and a bun in
the library restaurant. After a participant has agreed to take part in
our experiment, we provided them with a laptop to go through the
experiment script.

Figure 3 demonstrates the flow of the experiment. The welcome
page (1) explained what the experiment is about, who is conducting
that, for what reason and what data is being collected. The welcome
survey inquired basic information, such as how often the user reads
books, age and gender. A tutorial for each application (3, 6, 9)
taught users to use the application by guiding them through a few
simple tasks, such as find a certain book and adjust related books
with critiques. The tutorial has been included in the experiment
to mitigate the learning effect of using different applications. An
application (4, 7, 10) was presented along with the task to complete,
which had the following description: “Your task is to find books
that are interesting to you and that you might want to read later.
Add these books to your list of favourite books by hitting [button
icon]. When you are done, hit Done”. The survey regarding the user
experience of using the application included statements listed in
figure 4. The final page (12) indicated that the experiment is over.
Applications were shown to users in a counter-balanced order. The
script and application interface have been translated into Finnish.

Overall, we surveyed 42 participants (7 participants per experi-
mental condition) with the following gender distribution: 18 males,
21 females and 3 others, and the following age distribution: 18-24: 22
participants, 25-34: 17 participants and 35-44: 3 participants. Prior
to the experiment, we also asked participants to indicate how often
they read books, look for them online and whether they are looking
for a book to read at the moment. The majority indicated that they
read books more often than once a month (30 participants), look
for books online at least once in half a year (28) and are looking for
a book to read at the moment (29).
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Figure 4: Ratings that users gave to statements after using an application. Statements that apply to each of the three applica-
tions are highlighted with bold
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Figure 5: Behavioral activities

7 RESULTS
Survey data summarized in Figure 4 suggest that the majority of par-
ticipants understand how their actions affect recommended books
(RQ1): the number of participants who agree that they understand
that critiques affect related books is 36 for AG, and 40 for EE, while
for the statement that users also understand how their actions af-
fect related books, these numbers are 28 and 32, respectively. The
vast majority of users also indicated that they liked the ability to
have more control over recommendations, the top 5 books were
representative and keywords described critiques well.

Based on the survey data (table 1), ClusterExplorer makes re-
lated recommendations more helpful at finding interesting books
(Utility) and more enjoyable at browsing books (Exploration) than
traditional related recommendations (RQ2). We ran statistical tests
only for survey data for statements related to each of the three
applications to control for false discovery. In terms of behavioral

Table 1: Fixed effects (coefficients) of cumulative linkmixed-
effect regression models. Each cell corresponds to a coeffi-
cient of an ordinal regression model with a single indepen-
dent variable run on a dataset consisting of two applications.
The first application is assigned the value of 1, while the
other – 0. Dependent variables are ratings that users gave
to statements. Significance codes: ’**’ 0.01 ’*’ 0.05

Applications Ease Utility Serendipity Exploration Intent Satisfaction
EE vs. B -0.54 1.44** 0.75 0.91* 0.59 0.51
AG vs. B 0.01 0.47 0.38 1* 0.39 0.82

activities, the difference is very small (Figure 5). For each applica-
tion, medians for the number of books users found are the same
(EE: 2; AG: 2; B: 2) (Figure 5(b)) and for the time users spent looking
for books are very similar (EE: 100; AG: 104; B: 109) (Figure 5(a)).
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Based on survey and action data, the two versions of our ap-
proach do not differ significantly, which users also mentioned in
comments. However, collected data indicate that most users pro-
vided positive feedback on each application.

8 CONCLUSION AND DISCUSSION
In this paper, we designed and implemented a novel approach to
related item recommendations, ClusterExplorer, which is based on
latent factors retrieved from MF in the book domain. We evaluated
two versions of this approach: based on automatically generated
and expert edited topics. We also compared our approach to the
traditional related item recommendations. Based on the obtained
results, most users understand how their actions of navigating
in the latent space affect related book recommendations (RQ1).
We also found that ClusterExplorer improves utility in terms of
finding interesting books to read and user satisfaction of browsing
books (RQ2). The difference between automatically generated and
expert edited versions of ClusterExplorer is not significant based
on collected data. Generally, both ClusterExplorer and traditional
recommendations received positive feedback from users.

Users provided similar feedback on each of the applications in
terms of the survey data and their activities. One of the reasons for
that might be that our approach was affected by the low density
(0.13%) of the dataset. For example, the density of 1M MovieLens
dataset is 4% [4]. We believe that further experimentation with
denser datasets, user interfaces, latent spaces and similarity mea-
sures will reveal more insights on our approach. However, the
trend seems to be in favor of ClusterExplorer, as the statistically
significant results indicate its advantages over the traditional re-
lated recommendations and most users indicated that they enjoyed
having more control over related item recommendations.
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