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Abstract

Recommender systems use past behaviors of users to suggest items. Most tend to offer items similar to the items
that a target user has indicated as interesting. As a result, users become bored with obvious suggestions that
they might have already discovered. To improve user satisfaction, recommender systems should offer serendipitous
suggestions: items not only relevant and novel to the target user, but also significantly different from the items
that the user has rated. However, the concept of serendipity is very subjective and serendipitous encounters
are very rare in real-world scenarios, which makes serendipitous recommendations extremely difficult to study.
To date, various definitions and evaluation metrics to measure serendipity have been proposed, and there is no
wide consensus on which definition and evaluation metric to use. In this paper, we summarize most important
approaches to serendipity in recommender systems, compare different definitions and formalizations of the concept,
discuss serendipity-oriented recommendation algorithms and evaluation strategies to assess the algorithms, and
provide future research directions based on the reviewed literature.
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1 Introduction

Many online stores offer thousands of different products, such as movies, songs, books and various services. With
a wide range of goods, a store is likely to have a product that fits user preferences. However, the growth of choice
does not always lead to user satisfaction, as sometimes it is difficult to find a product a user would like to purchase
due the overwhelming number of available products [1].

To overcome the flood of information, online stores have widely adopted recommender systems [2]. In this
paper, the term recommender system (RS) refers to a software tool that suggests items interesting to users [1].
An item is “a piece of information that refers to a tangible or digital object, such as a good, a service or a process
that an RS suggests to the user in an interaction through the Web, email or text message” [3]. For example, an
item can refer to a movie, a song or even a friend in an online social network. A user is generally understood to
mean a person who uses an RS for any purpose. For example, a user might be an individual looking for a movie
to watch or a company representative looking for goods to purchase.

Recommendation algorithms can be divided into categories: non-personalized and personalized [4]. Non-
personalized algorithms suggest the same items to each user. For example, recommendations based on the pop-
ularity of items can be considered non-personalized. Personalized algorithms suggest different items depending
on the target user. In this case, two users might receive different recommendations. In this paper, we focus on
personalized RSs.

As a rule, personalized RSs provide suggestions based on user profile. A user profile might include any
information about a user, such as an ID, age, gender and actions the user has performed with items in the past.
In this paper, the term user profile refers to a set of items rated by the user [3]. Generation of recommendations
can be based on (1) ratings a target user and others have given to items, (2) attributes of items rated by the
target user or (3) both ratings and attributes [5]. One RS might suggest items that could be interesting to users
who like many items in common with the target user. Another might recommend items that have many common
attributes with items liked by the target user. For example, if a user rates many comedies, an RS will suggest
more comedies.

Currently, RSs are widely adopted for different purposes. The ultimate goal of services that host RSs is to
increase turnover [1]. Depending on the application scenarios, ways to achieve the goal might differ. One RS might
suggest expensive items over interesting ones for a particular user, as the profit of the hosting service depends on
user purchases. The RS of a service that sells subscriptions might suggest items interesting to users to encourage
users to visit the service again. The business goal of the RS thus may differ from the goals of the users of the
service [6].

1.1 Motivation

Users may interact with an RS for different purposes, such as expressing themselves, influencing others or just
browsing the catalog of items. However, the main reason the majority of individuals would use an RS is to
discover novel and interesting items. It is demanding to look for items manually among an overwhelming number
of options [3, 6, 7].

Most recommendation algorithms are evaluated based on accuracy, which does not correspond to user needs,
as high accuracy indicates that the algorithm has prediction power but neglects the novelty and unexpectedness
of suggested items [3, 8–10]. To achieve high accuracy, RSs tend to suggest items similar to a user profile [3, 11].
Consequently, the user receives recommendations only of items in some sense similar to items the user rated
initially when she/he started to use the service (the so-called overspecialization problem). This has been observed
to lead to a low user satisfaction [3, 6, 11,12].

One of the ways to overcome the overspecialization problem is to increase the serendipity of an RS. At this
point we tentatively consider an RS to be serendipitous if it is able to suggest novel, interesting and unexpected
items to a particular user. We will elaborate various definitions in section 2.2. Serendipity-oriented algorithms
can be used to slightly expand user tastes [13] or they can be applied as an additional “surprise me” option of an
RS [14]. It is challenging to suggest serendipitous items for the following reasons [3]:

• There is no consensus on the definition of serendipity in RSs, as many papers present different definitions
and formalizations of the concept [3, 15].

• It is not clear how to measure serendipity, as there is no agreement on the definition of the concept [12].

• Serendipity includes an emotional dimension, which is very subjective [9,16]. Consequently, it is difficult to
infer reasons why a user considers an item to be serendipitous [2].

2



• Serendipitous suggestions are less frequent than relevant ones, as not only must serendipitous items be
relevant, but also novel and unexpected to a user [3]. As a result, it is often more difficult to capture and
induce serendipitous recommendations than relevant ones in an experiment [17].

1.2 Methods and Logistics

In this paper, we focus on serendipity, a poorly investigated concept that remarkably influences user satisfaction
[11,18,19]. We aim at answering the following research questions:

RQ1 What is serendipity in recommender systems? What makes certain items serendipitous for particular users?

RQ2 What are the state-of-the-art recommendation approaches that suggest serendipitous items?

RQ3 How can we assess serendipity in recommender systems?

RQ4 What are the future directions of serendipity in RSs?

To address the research questions, we collected articles that mention serendipity using Google Scholar1, Scopus2

and Web of Science3.

1. Preliminary analysis. By investigating articles received by entering the query “serendipity in recommender
systems,” we inferred that researchers employ different definitions of serendipity and different metrics to
measure serendipity in RSs [19–21].

2. Serendipity definitions and metrics. To answer RQ1 and RQ3, we looked for papers that proposed definitions
of serendipity in RSs and methods to measure it. We selected the first 20 articles retrieved by the search
engines in response to the search queries “definition of serendipity in recommender systems,” “serendipity in
recommender systems,” “measure surprise in recommender systems” and “unexpectedness in recommender
systems.” To find papers that propose definitions of the concept and methods to measure it, we paid
attention to related works and evaluation metrics used in the articles (forward search [22]). Eventually, we
found 18 qualifying articles, six of which presented serendipity evaluation metrics (more detail is provided
in section 5).

3. Serendipity-oriented algorithms. To answer RQ2, we looked for algorithm proposals that improve the
serendipity metrics discovered, searching papers that cite articles with proposals of serendipity metrics
(backward search [22]).

4. Filter. Many of the articles mention serendipity in RSs, but mainly focus on other topics. We therefore
primarily selected relevant high-quality articles.

The goal of the paper is to give a definition of serendipity and an overview of existing recommendation
approaches and evaluation metrics, and thus to guide and inspire future efforts on recommendation serendipity.
The main contributions of this paper are summarized as follows:

• Review of definitions and formalizations of serendipity and related concepts, such as relevance, novelty and
unexpectedness.

• Review and classification of serendipity-oriented recommendation algorithms.

• Review of evaluation strategies to assess serendipity in RSs.

• Future directions to improve serendipity in RSs.

This paper is organized as follows. We answer RQ1 in section 2, which is dedicated to the definition of
serendipity in RSs. In section 3, we review serendipity-oriented recommendation algorithms and answer RQ2.
Sections 4 and 5 describe strategies to assess serendipity and evaluation metrics (RQ3 ), respectively. Finally, we
provide future directions (RQ4 ) and conclude in sections 6 and 7, respectively.

1https://scholar.google.com/
2http://www.scopus.com/
3https://webofknowledge.com/
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2 Concepts

The degree of uncertainty around the terminology related to serendipity requires us to set up vocabulary to be
used throughout the paper. In this section we answer RQ1 by defining serendipity in RSs and describing what
kinds of items are serendipitous for particular users.

2.1 Components of Serendipity

Serendipity is a complex concept which includes other concepts. In this section we provide those related concepts,
such as relevance, novelty and unexpectedness.

2.1.1 Relevance

Depending on a particular application scenario, we may consider different actions that a user performs with items
to indicate his/her interest. For example, we might regard an item as relevant for a user if she/he has gaven it
a high rating and/or if she/he has purchased it. Therefore, to combine different terms that mean the same in
the context of this paper, we define a relevant item as an item that a user likes, consumes or is interested in,
depending on the application scenario of a particular RS.

2.1.2 Novelty

The term novel item has different meanings that can be summarized as follows [3]:

1. Item novel to an RS. A recently added item that users have not yet rated [23] (so-called cold start problem
[24]).

2. Forgotten item. A user might forget that she/he consumed the item some time ago [23].

3. Unknown item. A user has never consumed the item in his/her life [23].

4. Unrated item. An unrated by the target user regardless of whether she/he is familiar with the item [7].

In this paper, the term novel item corresponds to definition 3 due to the popularity of the definition in studies on
serendipity [9, 12, 25, 26]. A novel item is a relevant or irrelevant item that a target user has never seen or heard
about in his/her life [23]. However, a user does not normally rate all the items with which she/he is familiar.

It is often necessary to estimate how probable it is that a user has already seen an item. A user is more
likely to be familiar with items similar to what she/he consumes and popular among other users [6, 27]. In this
paper, popularity indicates how likely users are to be familiar with certain items. Popularity might correspond to
a number of ratings assigned to an item in a dataset used by an RS. Popular items are widely recognized by an
individual, since she/he might have heard about the items from others or mass media, such as TV, radio or popular
web-sites. A user might also be aware of items that are similar to what she/he usually consumes. For example, a
jazz lover is likely to attend a small jazz concert rather than a rock concert. By attending the jazz concert she/he
is likely to discover some unpopular jazz music. Novelty therefore includes two subcomponents: unpopularity and
dissimilarity to a user profile [13]. For example, a jazz lover is likely to consider a very unpopular jazz song and
relatively popular classical song as novel. In contrast, the user might have already listened to a classical hit on
the radio as well as a relatively popular jazz song in a jazz club.

2.1.3 Unexpectedness

Unexpectedness and surprise are terms frequently used in the literature [10, 20, 28, 29], but to the best of our
knowledge there is no consensus on the terms’ definitions. In this paper, the terms unexpected and surprising refer
to items that significantly differ from the profile of the user regardless of how novel or relevant those items are.
For example, a classical song recommended to a jazz lover is likely to be more unexpected than a jazz song.

There are two differences between novelty and unexpectedness. First, a user may find an item unexpected
even if she/he is familiar with the item. Second, to surprise a user, unexpected items have to differ from the user
profile more than novel items.
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2.2 Concept of Serendipity

Serendipity is a difficult concept to study [3], as it includes an emotional dimension [9, 16]. It is challenging to
define serendipity in recommender systems as well as what kind of items are serendipitous and why [3, 15], since
generally serendipitous encounters are very rare [17].

The term serendipity has been recognized as one of the most untranslatable words [30]. The first known use of
the term was found in a letter by Horace Walpole to Sir Horace Mann on January 28, 1754. The author described
his discovery by referencing a Persian fairy tale, “The Three Princes of Serendip”. The story described a journey
taken by three princes of the country Serendip to explore the world [31]. In the letter, Horace Walpole indicated
that the princes were “always making discoveries, by accidents & sagacity, of things which they were not in quest
of” [32].

According to the dictionary [33], serendipity is “the faculty of making fortunate discoveries by accident.” The
word “discovery” indicates the novelty of serendipitous encounters, while the word “fortunate” indicates that the
discovery must be relevant and unexpected.

2.2.1 Serendipity in a computational context

As serendipity is a complicated concept, Van Andel discussed whether a computer can generate serendipitous
information [34]:

[P]ure serendipity is not amenable to generation by a computer. The very moment I can plan or
programme ’serendipity’ it cannot be called serendipity anymore. All I can programme is, that, if the
unforeseen happens, the system alerts the user and incites him to observe and act by himself by trying
to make a correct abduction of the surprising fact or relation

The author suggests that computer programs cannot generate but can help a user find serendipitous information.
Based on [34], we suppose that as recommender systems are designed to “assist and augment” a process of making
“choices without sufficient personal experience of the alternatives” [35], they can also assist a process of making
“fortunate discoveries” [33].

Corneli et al. investigated serendipity in a computational context and proposed a framework to describe the
concept [36]. The authors considered focus shift a key condition for serendipity, which happens when something
initially perceived irrelevant, neutral or even negative becomes relevant. According to the authors, the concept of
serendipity includes four components:

• Prepared mind (focus on something an explorer is looking for). The component indicates that an explorer
should be focused on what she/he wants to investigate.

• Serendipity trigger (inspiration for a novel result). The act of drawing initial attention to a serendipitous
object or phenomenon.

• Bridge (inference). Investigation of a discovered object or phenomenon.

• Result (an outcome). This can be a new artifact, process, phenomenon, hypothesis or problem.

The framework can be illustrated using the example of the microwave oven invention. Once Percy Spencer was
working with a radar set and noticed that a candy bar in his pocket had melted. Later, the researcher investigated
this phenomenon and invented the first microwave oven. In the example, a focus shift happened when the once
uninteresting melted candy bar attracted the researcher’s attention. Percy Spencer had a prepared mind, as he
was initially working with radar. The researcher experienced a serendipity trigger when he noticed that the candy
bar had melted. A bridge occurred when he investigated why it had melted. Finally, the result is the invention of
the microwave oven.

2.2.2 Serendipity in the context of recommender systems

The framework proposed by Corneli et al. can also apply to RSs. In this case, a focus shift happens when initially
uninteresting items become interesting. A user has a prepared mind, as she/he expects that an RS will suggest
items similar to his/her profile [10]. The attention of the user drawn by the items represents a serendipity trigger.
The investigation of the items by the user is a bridge. Finally, the result for the user is the obtained knowledge.

According to the framework, an item serendipitous for a user should meet certain requirements. First, the
serendipitous item is required to be unexpected and relevant to create a focus shift. A user is likely to consider
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Figure 1: Euler diagram of items from a user’s point of view at a given moment of time (snapshot)

an item irrelevant at first sight if the item is significantly different from his/her profile (unexpected). Meanwhile,
the item is required to be relevant to eventually become interesting for the user. To create a serendipity trigger,
the item must be novel for the user; otherwise the user would not pay attention to the item. As a result, to be
serendipitous for a user, items must be relevant, novel and unexpected.

Many authors indicate that novelty, relevance and unexpectedness are important for serendipity, yet these
authors often do not define these concepts, which might cause confusion [8,9,21,28,29,37]. The majority of papers
include each of these three components to the definition of serendipity [9,28,29,37]. One example is the definition
proposed by Iaquinta et al. [26]:

A serendipitous recommendation helps the user to find a surprisingly interesting item that she might
not have otherwise discovered (or it would have been really hard to discover). [...] Serendipity cannot
happen if the user already knows what is recommended to her, because a serendipitous happening is by
definition something new. Thus the lower is the probability that user knows an item, the higher is the
probability that a specific item could result in a serendipitous recommendation.

Iaquinta et al. suggest that serendipitous items are always relevant, novel and unexpected to a user [26]. In
contrast, Kaminskas and Bridge consider even items a user is aware of to be serendipitous [21]. Their definition
includes only relevance and unexpectedness [21]:

Serendipity consists of two components - surprise and relevance [...] we also do not require a surprising
item to be novel, but only different from the user’s expectations, which are represented by a set of items.

Another definition was proposed by Chiu et al. [38]. The authors proposed completely different definitions
adopted towards online social networks. According to [38], a serendipitous item is novel for a target user, but
familiar to the user’s friends, defined as contacts in an online social network: “Items are not yet accessed (implicit)
or rated (explicit). But the user’s friends (in the social network) have accessed before” [38]. Table 1 provides
additional summarized examples of definitions of serendipity.

To answer RQ1, in this paper, we refer to serendipity as a property of an RS that indicates how good the
RS is at suggesting serendipitous items [7], where serendipitous items are relevant, novel and unexpected for a
user [3, 10,12,26,29,37].

In terms of popularity and similarity to a user profile, serendipitous items are limited by novelty and unex-
pectedness. First, as serendipity includes novelty, serendipitous items should be unpopular [40] and dissimilar to a
user profile [19], otherwise the user is likely to be familiar with them (Section 2.1.2). Second, the unexpectedness
component requires serendipitous items to significantly differ from a user profile (Section 2.1.3).

Figure 1 illustrates set intersections of familiar, novel, rated, relevant, unexpected and serendipitous items
perceived by a user at a particular moment of time. Suppose that an RS contains I items and a user is familiar
with items Ifam ⊆ I. The items that the user has never heard of are novel Inov = I \Ifam. The RS has information
that the user is aware of items she/he rated Iu ⊆ Ifam. We assume that the user rates only items with which
she/he is familiar. Items interesting to the user are relevant Irel ⊆ I. They are distributed among the categories
familiar, rated, novel and unexpected. Unexpected items Iunexp ⊆ I differ from items the user rated and can be
novel or familiar to the user. In rare cases, unexpected items can also be rated. Rated items are likely to be
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Table 1: Definitions of serendipity in related works

Articles Definition of serendipity Components

McNee et al. [29]

“serendipity in a recommender
is the experience of receiving an
unexpected and fortuitous item
recommendation. But even if we
remove that component, the
unexpectedness part of this concept
the novelty of the received
recommendations is still difficult
to measure”

Relevance,
novelty and
unexpectedness

Adamopoulos
and Tuzhilin
[10,28]

“serendipity, the most closely related
concept to unexpectedness, involves
a positive emotional response of the
user about a previously unknown
(novel) [...] serendipitous
recommendations are by definition
also novel.”

Relevance,
novelty and
unexpectedness

Sridharan [37]

“serendipity is defined as the accident
of finding something good or useful
while not specifically searching
for it. Serendipity is thus closely
related to unexpectedness and involves
a positive emotional response of the
user about a previously unknown item.
It measures how surprising the
unexpected recommendations are [...]
serendipity is concerned with the
novelty of recommendations and in
how far recommendations may
positively surprise users”

Relevance,
novelty and
unexpectedness

Zhang et al. [19]
“serendipity represents the “unusualness”
or “surprise” of recommendations”

Novelty and
unexpectedness

Maksai et al. [39]
“Serendipity is the quality
of being both unexpected and useful.”

Relevance and
unexpectedness
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unexpected if they differ from the rest of the rated items. Serendipitous items are relevant, novel and unexpected
Iser = Irel ∩ Inov ∩ Iunexp. The task of the serendipity-oriented RS is to suggest to the user serendipitous items
Iser based on rated items Iu.

The proposed restrictions of serendipitous items can have exceptions. For example, a user might consider a
popular item novel and serendipitous. We apply these restrictions for simplification and assume they are reasonable
in most cases.

In general, the increase of serendipity decreases accuracy for two reasons. First, as users tend to like items
similar to items they already find interesting, many items different from the users’ profiles are irrelevant. Second,
considering the number of low-quality items among unpopular ones [6], increasing serendipity is likely to increase
the number of irrelevant items recommended. An algorithm has to offer risky suggestions to increase serendipity.

Depending on user needs, requirements for serendipity-oriented algorithms might differ. A user might want to
discover relevant items. In this case, it is important to keep a trade-off between accuracy and serendipity [19,21,41].
However, a user might look for serendipitous items in particular. For example, a “surprise me” algorithm could
be offered to the user as an additional option [14]. In this case, it might be more important to increase serendipity
regardless of accuracy.

2.2.3 Difference between Serendipity and Similar Concepts

It is important to clarify the difference between novelty and serendipity. First, serendipitous items are relevant,
while novel items can be irrelevant. Second, as serendipitous items are unexpected, they significantly differ from
items a user rated in an RS, which is not necessary for novel items. For example, let us assume a jazz lover logs
into an RS to discover a few songs. A suggestion of a jazz song that the user is unaware of, regardless of whether
she/he likes it, is likely to be novel, but not serendipitous.

Another concept which might be confused with serendipity is diversity. The concept reflects how different
items are from each other [7, 27]. Diversity is a desirable property in an RS, as users often become bored with
recommendation lists containing items very similar to each other. For example, a poker player might enjoy a
recommendation list of books about poker, combinatorics and math more than a list containing only poker books.

There are two key differences between diversity and serendipity. First, diversity is based on the comparison of
recommended items between each other, while serendipity is based on the comparison of recommended items and
a user profile [27]. Second, diversity does not include relevance, a necessary component for serendipity.

2.2.4 Conclusions and Discussion

In this section, we answered RQ1 based on the reviewed literature related to serendipity in RSs. Serendipity
is a property that indicates how good an RS is at suggesting serendipitous items that are relevant, novel and
unexpected for a particular user. Serendipitous items are by definition unpopular and significantly different from
the user profile.

It is worth mentioning that serendipity is not always a necessary component in suggesting items. Some services
might need an RS to suggest only relevant items, regardless of how serendipitous those items are. For example,
an RS that suggests friends might be required to offer only those individuals with whom a target user is familiar.
Furthermore, users might prefer obvious suggestions over serendipitous ones [42]. For example, user intention to
receive risky recommendations might increase with the growth of experience of using the system [6]. However, in
many cases, serendipity is perceived as a purely positive property of an RS [28,29,41].

3 Approaches

In the section we are going to review serendipity-oriented algorithms and answer RQ2. Recommendation algorithms
can be divided into the following categories [43].

• Content-based filtering (CBF) utilizes items’ attributes to generate recommendations [43]. This kind of
algorithm considers choices a user has made in the past to suggest items the user will consume in the future.
For example, if a user has watched a comedy movie, then a CBF algorithm would suggest another comedy
movie to the user.

• Collaborative filtering (CF) considers only ratings users have gaven to items [43]. For example, if two users
have rated many common items similarly, then a CF algorithm would probably recommend items highly
rated by the first user that the second user has not yet rated and vice versa.
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– Memory-based CF typically uses similarity measures based on user ratings [5, 43]. This approach
generates recommendations for a target user based on what similar users have rated or based on items
similar to items the target user has consumed.

– Model-based CF utilizes a model that receives user ratings as input and generates recommendations
[5, 43].

• Hybrid filtering takes into account both ratings and attributes of items [43–45].

Serendipity-oriented RSs can be classified depending on the data they use (CF, CBF, hybrid) or on the
architecture of recommendation algorithms. We divide serendipity-oriented approaches into three categories:

• Reranking algorithms (Reranking). To improve serendipity, an algorithm can leverage ratings predicted by
an accuracy-oriented approach and rerank the output of an RS. An accuracy-oriented algorithm finds items
relevant for a target user, while a reranking algorithm assigns low ranks to obvious suggestions.

• Serendipity-oriented modification (Modification). This category represents modifications of accuracy-oriented
algorithms. The main difference between modification and reranking is that reranking algorithms can use
any accuracy-oriented algorithms that assign ranking scores to items, while modifications can only be applied
to certain kinds of algorithms. An example is the k-furthest neighbor approach [18], which is a modification
of the k-nearest neighbor algorithm (user-based CF). Instead of suggesting items liked by users similar to a
target user, a k-furthest neighbor algorithm recommends items disliked by users dissimilar to a target user.

• Novel algorithms (New). This category includes serendipity-oriented algorithms that are not based on any
common accuracy-oriented algorithms. Approaches from this category are very diverse and use different
techniques, such as clustering [46] and random walk with restarts [8, 14]. One of the examples is the
TANGENT algorithm, which detects groups of likeminded users and suggests items simultaneously liked by
users from the group of the target user and other groups [14]. Recommended items are related to previous
choices of the user and likely to be surprising, as these items are chosen by users from a group different than
the one of the target user.

We may take actions to improve the serendipity of recommendation at different stages of the recommendation
process. Similarly to [47], we suggest three paradigms for serendipity-oriented recommendation algorithms:

• Pre-filtering. A recommendation algorithm preprocesses the input data for an accuracy-oriented algorithm
to improve serendipity.

• Modeling. A recommendation algorithm improves serendipity in the phase of generating recommendations.

• Post-filtering. A recommendation algorithm reranks the results of accuracy-oriented algorithms.

Table 2 demonstrates classification of the state-of-the-art serendipity-oriented approaches. The majority of
approaches are either modifications or of uncertain basis. In terms of the data that algorithms use, we reviewed
at least one algorithm from each category (CF, CBF and hybrid). Serendipity subcomponents include popularity
(pop) and similarity to a user profile (sim), which the algorithms take into account. By assessing the parameter,
we examined whether the model takes into account the subcomponents. Among the approaches presented, the
algorithms proposed by Zheng et al. [13] and Zhang et al. [19] capture both popularity and similarity to a user
profile.

To review serendipity-oriented algorithms, we present notation in Table 3. Let I be a set of available items
and U be a set of users. User u rates or interacts with items Iu, Iu ⊆ I. A recommender system suggests Ru items
to user u. Each item i, i ∈ I is represented as a vector i = (fi,1, fi,2, ..., fi,z) in a multidimensional feature space
F . For example, a feature can be a genre of a movie on a web-site. If F = (drama, comedy, romance) then the
movie “Forrest Gump” can be represented as iForrest = (0.4, 0.2, 0.4), where the numbers indicate how strongly
the movie belongs to the genre.

3.1 Reranking

This section is dedicated to serendipity-oriented recommendation algorithms that rerank results of accuracy-
oriented ones to increase serendipity.
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Table 2: Classification of serendipity-oriented algorithms (MF - matrix factorization, kNN - k-nearest neighbor,
unpop - unpopularity, dissim - dissimilarity to a user profile)

Name Approach type
Serendipity

subcomponents
Paradigm

Recommendation
generation

Utility Model [10] Hybrid dissim Post-filtering Reranking
Full Auralist [19] Model-based CF unpop + dissim Post-filtering Reranking

K-Furthest
Neighbor [18]

Memory-based CF unpop Pre-filtering
Modification

of kNN
kNN with

item taxonomy [48]
Hybrid dissim Modeling

Modification
of kNN

Search-time-
based-RS [49]

Hybrid unpop Modeling
Modification

of kNN
Unexpectedness

-Augmented Utility
Model [13]

Model-based CF unpop + dissim Modeling
Modification

of MF

Serendipitous
Personalized
Ranking [41]

Model-based CF unpop Modeling
Modification

of MF

Distance-based
Model [46]

CBF dissim Modeling New

TANGENT [14] Model-based CF dissim Modeling New
RWR-KI [8] CBF unpop Modeling New

Table 3: Notations

I = (i1, i2, ..., in) the set of items
F = (f1, f2, ..., fz) feature set
i = (fi,1, fi,2, ..., fi,z) representation of item i
U = (u1, u2, ..., um) the set of users
Iu, Iu ⊆ I the set of items rated by user u (user profile)
Ru, Ru ⊆ I the set of items recommended to user u
relu(i) 1 if item i relevant for user u and 0 otherwise
Ui the set of users who rated item i
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3.1.1 Utility Model

Adamopoulos and Tuzhilin proposed a serendipity-oriented algorithm that reranks the results of any accuracy-
oriented algorithm that produces relevance scores [10]. The algorithm assigns overall scores to items based on two
metrics: (1) unexpectedness utility and (2) quality utility. Unexpectedness utility indicates obviousness of items
for a user, while quality utility reflects their relevance for the user. The algorithm consists of the following steps:

1. Computation of the set of expected items Eu;

2. Filtering of items that are likely to be irrelevant based on the relevance score provided by an accuracy-oriented
algorithm;

3. Filter of items that are too obvious for a user based on expected items Eu;

4. Overall utility calculation;

5. Recommendation of items based on the overall utility.

The set of expected items Eu is represented by items previously consumed by a user Iu or by items similar
or related to Iu, where relatedness is inferred by various data mining techniques. In steps 2 and 3, the algorithm
uses a threshold to remove items obvious or irrelevant to a user. On the last step, the algorithm suggests items
with the highest overall utility to the user. Overall utility consists of unexpectedness utility and quality utility.
Unexpectedness utility depends on the average distance between an item and user expectations Eu, where the
distance is based on user ratings (collaborative) and on item attributes (content-based). Quality utility is based
on ratings provided by an accuracy-oriented algorithm.

The proposed algorithm seems to recommend more items that differ from items a target user usually consumes
due to filtering based on user expectations. However, the algorithm might still recommend popular items, as it
does not explicitly take popularity into account.

3.1.2 Full Auralist

Seeking to improve diversity, novelty and serendipity while keeping acceptable accuracy, Zhang et al. proposed a
recommendation algorithm called Full Auralist [19]. Full Auralist consists of three algorithms:

• Basic Auralist is responsible for the relevance of recommendations.

• Listener Diversity provides a diversified recommendation list.

• Declustering is designed to suggest items unexpected for a user.

Each algorithm returns a ranked list of items. Full Auralist, in turn, integrates generated ranks using their linear
combination.

The algorithm appears to capture both the popularity of items and their similarity to a user profile. However,
Full Auralist might be quite difficult to implement, as it contains three different algorithms.

3.2 Modification

This section is dedicated to serendipity-oriented recommendation algorithms based on accuracy-oriented ones.

3.2.1 K-Furthest Neighbor

Seeking to improve novelty, Said et al. has proposed k-furthest neighbor (kFN) recommendation algorithm, similar
to kNN [18]. As kNN is biased towards popular items, which results in poor personalization, kFN is designed to
overcome this problem. Instead of suggesting items that neighborhood users like, kFN forms neighborhoods of
users dissimilar to a target user. By selecting items dissimilar users dislike, kFN is supposed to overcome the bias
of items liked by the majority [18].

By overcoming the popularity bias, the algorithm seems to suggest more novel items, at least with respect to
kNN. However, it is questionable whether it recommends serendipitous items, as it does not explicitly improve the
dissimilarity of recommendations to a target user profile.
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3.2.2 kNN with item taxonomy

Nakatsuji et al. designed a novelty-oriented recommendation algorithm [48]. The authors modified kNN by
replacing the similarity measure with relatedness. By forming a neighborhood of related users and picking items
from their profiles, the algorithm is supposed to improve the novelty of recommendations, over that of a classical
kNN.

The algorithm is a modification of kNN, which calculates ratings based on relatedness. Relatedness is inferred
by utilizing random walk with restarts (RWR) on a user similarity graph [50]. In RWR a random particle travels
from node to node with a probability equivalent to an edge weight. During each step, the particle has a probability
to return to its starting node. The particle visits nodes a different number of times depending on the starting
node. After a sufficient number of random walks, the ratio of the number of transitions and number of visits of a
certain node stabilizes. The obtained probabilities indicate relatedness between starting node and other nodes.

In a user similarity graph, nodes correspond to users, while edges correspond to similarities. User similarities
are based on a taxonomy of items. The similarities are calculated considering items and classes of items that a
user rated.

By picking users who are dissimilar but related to a target user, the algorithm seems to suggest more items
that are dissimilar to the target user profile. Furthermore, user similarity calculation might be especially useful
with a rich taxonomy of items. However, even related users might still give high ratings to popular items, which
might result in suggestions with which a target user is already familiar.

3.2.3 Search-time-based-RS

Kawamae proposed a recommendation algorithm based on estimated search time [49,51]. The author employed the
following definition of serendipity: “a serendipitous recommendation helps the user find a surprisingly interesting
item he might not have otherwise discovered” [49]. In other words, the more difficult it is to find an item, the
more probable that the item is serendipitous to a user.

The algorithm consists of three steps [49]. First, for each target user the algorithm detects similar users
(innovators) who have common tastes and who discover recently released items better than the target user.
Second, the algorithm measures how likely it is that a target user will consume a particular item from a profile
of an innovator. Third, the algorithm combines these two probability parameters into ranking score and sorts a
suggestion list.

The advantage of the algorithm is that it takes into account when items were released and consumed by users.
In terms of similarity to a user profile and popularity, the algorithm seems to suggest unpopular items, as personal
innovator probability gives high scores to recently released items that have not yet become popular. However,
as the algorithm searches for users who have rated many common items with the target user, it is likely that a
recommended item would be similar to a target user profile.

3.2.4 Unexpectedness-Augmented Utility Model

Zheng et al. proposed a recommendation algorithm [13] based on PureSVD (variation of singular value decompo-
sition (SVD)) [52]. The main difference between PureSVD and the proposed algorithm is the optimization task:

min
∑
u∈U

∑
i∈I

(r̃u,i − pu · qTi )2wu,i + λ(|pu|2 + |qi|2) (1)

wu,i =

(
1− |Ui|
|U |

)
+

∑
j∈Iu dist(i, j)

|Iu|
, (2)

where pu and qi are user and item feature vectors, respectively, while r̃u,i corresponds to the ratings user u gave
to item i with the absence of a rating represented by zero. The set of users who rated item i is represented by Ui.
The weight wu,i increases the contribution of unexpected items, which forces a gradient descent algorithm to pay
additional attention to the ratings of those items [13].

The proposed algorithm captures both popularity and similarity to a user profile. Consequently, it suggests
more novel and serendipitous items than PureSVD.

3.2.5 Serendipitous Personalized Ranking

Lu et al. suggested a serendipitous personalized ranking algorithm (SPR), based on SVD. The objective of SPR
is to maximize the serendipitous area under the ROC (receiver operating characteristic) curve (SAUC). SAUC is
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based on AUC (area under the curve) and defined as follows [41]:

SAUC(u) =
1

|I+u ||I \ I+u |
∑
i∈I+u

∑
j∈(I\I+u )

σ(r̂u,i − r̂u,j)(pop(j))α (3)

where σ is a 0-1 loss function: σ(x) = 1 if x > 0, σ(x) = 0 otherwise, while r̂u,i is a preference prediction of user
u for item i. Relevant items are represented by I+u , consequently, I \ I+u corresponds to unrated and irrelevant
items. Popularity weight corresponds to pop(i), pop(i) ∝ |Ui|.

The proposed algorithm appears to have high novelty due to the popularity parameter. However, the algorithm
might not suggest serendipitous items, as it disregards dissimilarity to a user profile.

3.3 New

This section is dedicated to serendipity-oriented recommendation algorithms that are not based on any common
accuracy-oriented algorithms.

3.3.1 Distance-based model

Akiyama et al. proposed a content-based algorithm to improve the serendipity of an RS. First, the recommendation
algorithm clusters items from a user profile based on item attributes. Second, the algorithm assigns scores to
unrated items based on their distance from discovered clusters and on how unexpected they are for the user.
Finally, the algorithm ranks unrated items according to their scores and suggests the recommendation list to the
user [46].

The algorithm does not have many parameters, which makes it easy to control. Besides, an algorithm’s content-
based nature might positively result in computational time depending on the dataset. However, the algorithm
disregards the popularity subcomponent of serendipity.

3.3.2 TANGENT

Onuma et al. proposed the TANGENT algorithm to broaden user tastes [14]. The algorithm performs on a
bipartite graph, where users and items correspond to nodes, while ratings correspond to edges. TANGENT
detects groups of likeminded users and suggests items relevant to users from different groups. For example, if a
target user belongs to comedy fans, the algorithm will suggest a movie relevant not only to comedy fans, but also
to users from other groups, such as action fans or romance fans.

The proposed algorithm appears to broaden user tastes and retain the accuracy of recommendations. However,
TANGENT might suggest popular items that users already know well, as items liked by users from different groups
are likely to be popular.

3.3.3 RWR-KI

De Gemmis et al. proposed a serendipity-oriented RWR-KI algorithm [8]. RWR-KI stands for random walk
with restarts enhanced with knowledge infusion. The algorithm suggests items based on the results of RWR that
exploits an item similarity graph, where similarity indicates relatedness of items. The authors used WordNet and
Wikipedia to calculate item similarities. By using uncommon similarity measure, the algorithm is supposed to
suggest serendipitous items.

The algorithm suggests items based on the result of RWR, which receives a graph of item similarities and a set
of starting nodes as an input. The item similarity graph contains nodes that correspond to items, and weighted
edges, where weights correspond to similarities between connected items. Item similarities are inferred using item
descriptions, WordNet and Wikipedia. Given an item similarity graph and a set of starting nodes Iu (items rated
by a user), RWR returns relatedness between items and a user profile. Items the user has not yet rated are ranked
according to inferred relatedness values and suggested to the user.

The RWR-KI algorithm might suggest serendipitous items, as the algorithm uses an uncommon similarity
measure that indicates relatedness of items instead of similarity. Furthermore, as the algorithm does not depend
on user ratings, recommendations seem to be unbiased towards popular items. However, suggested items might
still be similar to a user profile, since they might have similar descriptions. Besides, RWR-KI requires information
enrichment using sources, such as WordNet or Wikipedia, which requires additional effort.
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4 Evaluation Strategies

To address RQ3, in this section we discuss evaluation strategies used to assess serendipity in recommender systems
(RSs). We review offline and online evaluation strategies.

Depending on the specific domain, it is necessary to choose a suitable objective for an RS. For example, the
goal of an RS that suggests friends might be to offer items with which a user is likely to be familiar. However,
a music RS might suggest only novel items. It is crucial for the friend RS to have high accuracy. Meanwhile,
the music recommendations require both accuracy and novelty [6]. Requirements of an RS therefore influence the
choice of evaluation metrics and the decision on a recommendation algorithm [7]. According to different objectives,
the evaluation metrics of the recommendation algorithms could be different as well.

Traditionally, evaluation strategies are divided into two categories: offline evaluation and online evaluation. In
offline evaluation, researchers conduct experiments using pre-collected or simulated datasets. In the experiments,
researchers hide some ratings and let an algorithm predict them based on the rest of the data. The performance
of algorithms is usually presented by evaluation metrics. Based on results, researchers may choose a suitable
algorithm [2,7, 53].

Online evaluation involves real users interacting with a recommender system. For example, users might explic-
itly indicate whether they find recommended items novel or interesting. Online experiments can be conducted by
using an RS prototype or a deployed functioning RS [2,7].

Usually, online evaluation is demanding and complicated, as it involves real users. Researchers, therefore,
conduct offline experiments prior to the implementation of an online RS [7].

4.1 Offline evaluation

In offline experiments, researchers use pre-collected implicit or explicit user preferences to simulate the behavior of
users and assess recommendation algorithms. Even though this kind of experiment only lets researchers answer a
limited number of questions normally related to the prediction power of algorithms, it is often necessary to conduct
offline experiments prior to online evaluation to decrease the number of candidate algorithms [7]. Regarding the
evaluation of serendipity, many papers provide both qualitative and quantitative analysis of recommendation
algorithms [7, 21].

4.1.1 Quantitative analysis

In offline experiments, researchers select a number of test users and hide some of their ratings. The hidden data
are regarded as a test set and the rest as a training set. The candidate algorithms receive the training data as an
input and predict the test set. The researchers filter candidate algorithms by their predictive ability [2, 7].

Current datasets contain data regarding items relevant to a particular user, but lack data regarding serendip-
itous items. To assess serendipity in offline experiments, researchers make assumptions regarding serendipitous
items and measure serendipity using the metrics described in section 5.

4.1.2 Qualitative analysis

It is possible to manually assess the serendipity of recommendations by comparing recommended items and user
profiles. For example, Kaminskas and Bridge presented a qualitative analysis of suggestion lists offered by three
popular recommendation algorithms [21]. One of the goals in the paper was to propose evaluation metrics for
unexpectedness. To support the results of quantitative analysis, the authors compared a target user profile and
recommended items for the user, including values of the proposed evaluation metrics. The items in user profiles
and the recommended items referred to music artists.

4.2 Online evaluation

We regard online evaluation as evaluation that involves users interacting with the recommender system. This
kind of evaluation may have different forms, such as questionnaires and experiments where users interact with a
deployed RS [7].

Conducting online experiments is especially important for an assessment of novelty and serendipity, since it
allows asking a user if she/he finds a recommended item unexpected or novel. On the one hand, these kinds of
experiments are more representative than offline experiments, since they involve real users interacting with the
RS [29]. On the other hand, online experiments are more demanding to conduct [7].
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Table 4: Serendipity assessment in experiments

Article Application Question

[19] Music songs
“Exactly what I listen to normally... Something
I would never have listened to otherwise”
(Likert scale)

[54] Music artists
“Did you find artists you wouldn’t have found
easily on your own and which you would like to
listen to from now on?”

[20] TV shows

“We inquired about serendipity for recommended
shows, which means whether the recommended
shows had hardly ever been heard of before
by viewers but seemed to be interesting or
whether they were already known but were
unexpected”

[18] Movies “Are the recommendations serendipitous?”

[55] IBM Connections
Participants indicated whether an item is
surprising to them.

[8] Movies Analysis of facial expressions

The main challenge in assessing serendipity in an online experiment is that it is difficult for a user to detect
serendipitous items, since they are new to a user. Many papers have used different methods to investigate
serendipity and novelty in RSs. In this section, we review the most common approaches mentioned in papers
dedicated to serendipity.

4.2.1 Questionnaire

Many RSs provide suggestions and explicitly ask users whether they find an item serendipitous [18–20,54]. A user
might detect relevant and novel items, but it is difficult for the user to determine whether an item is unexpected,
since the concept of unexpectedness is quite vague and might depend on many factors, such as mood, time of day
and experimental setting. It is important to formulate a question about serendipity that a user would understand.
For example, in [18] the authors asked participants whether they thought the recommendations were serendipitous.
The results of the experiment were not statistically significant. The authors assumed this happened because most
users were not sure what serendipity meant, as the term is difficult to translate to other languages. Table 4 reviews
questions that were used in questionnaires to assess the serendipity of recommended items.

Regarding novelty, it is possible to utilize the setting suggested in [25]. In the context of music recommendation,
a user might be offered a list of songs without any metadata. The user would listen to each song for 30 seconds
and then inform a researcher whether she/he knows and likes the song.

4.2.2 Qualitative analysis

It might be beneficial to ask users to give feedback on the recommendation list as a whole. Users might indicate
what they liked or disliked the most or what they would improve and why [19, 56]. For example, Zhang et al.
presented a qualitative analysis based on users’ comments on an RS [19]. The authors proposed a recommendation
approach which was evaluated online. In the experiment, different RSs suggested music artists to users. Users not
only rated suggested artists but also left comments on provided recommendation lists. The authors analyzed the
comments and inferred factors that affected user perception of recommendation lists in the experiment.

4.2.3 Deployed RS

Sometimes it is necessary to improve an algorithm inside an already existing and deployed RS. Users can be divided
into groups and introduced to the output of different recommendation algorithms. In the settings, researchers
assume that users are not aware of the experiment. By analyzing user behavior, researchers make a decision
between algorithms [7].
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Assessing the impact of serendipitous items on user satisfaction in an online experiment with a deployed RS
might be challenging for two reasons. First, by introducing serendipitous items, an RS might affect users differently
depending on their level of experience [6]. Second, it might be difficult to detect an impact of serendipitous items
on user behavior due to the emotional dimension of serendipity [9,16]. However, to the best of our knowledge, the
number of experiments on serendipity in RSs that involve deployed RS is very limited.

5 Formal Definitions of Serendipity

To answer RQ3, in this section, we are going to review evaluation metrics that measure serendipity in recommender
systems (RSs). The section provides a comparison of different metrics that have been proposed [19–21], the section
provides their comparison, including their advantages and disadvantages.

Serendipity metrics can be divided into two categories: component metrics and full metrics. Component
metrics measure different components of serendipity, such as novelty or unexpectedness, while full metrics measure
serendipity as a whole.

5.1 Component Metrics

Each component of serendipity can be measured in different ways. In this section, we are going to review serendipity
component metrics that measure novelty and unexpectedness.

5.1.1 Novelty

Vargas and Castells proposed two novelty metrics [27]. The first metric is based on an items distance from items
a user has consumed (user profile) and has two variations:

novdist1va (i, u) = min
j∈Iu

dist(i, j) (4)

novdist2va (i, u) =
1

|Iu|
∑
j∈Iu

dist(i, j) (5)

where dist(i, j) indicates the distance between items i and j and is formalized as follows:

dist(i, j) = 1− sim(i, j), (6)

where sim(i, j) is any kind of similarity between items i and j (sim(i, j) ∈ [0, 1]). For example, it might be
content-based cosine distance [57]. The second novelty metric is based on popularity and has two variations:

novpop1va (i, u) = 1− |Ui|
|U |

, (7)

novpop2va (i, u) = − log2

|Ui|
|U |

. (8)

Nakatsuji et al. proposed a novelty metric similar to eq. 4 [48]. They considered a taxonomy of items, where
an item belongs to one of classes CLS = (cls1, cls2, ..., clsk). The novelty metric is based on a minimum distance
between an item and a user profile in an item taxonomy.

novna(i, u) = min
j∈Iu

(dis(clsj , clsi)), (9)

where clsk is a class of item k in an item taxonomy, while dis(clsj , clsi) is the distance between classes clsj and
clsi in the taxonomy.
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5.1.2 Unexpectedness

Kaminskas and Bridge suggested that serendipity includes two components: unexpectedness and relevance [21].
The authors indicated that unexpectedness reflects how dissimilar a suggested item is to a user profile, while
relevance can be measured by accuracy metrics [2]. To measure unexpectedness, Kaminskas and Bridge suggested
two pair-wise similarity metrics [21]: (1) point-wise mutual information and (2) content-based similarity.

Point-wise mutual information indicates how similar two items are based on the numbers of users who have
rated both items and each item separately:

PMI(i, j) = − log2

p(i, j)

p(i)p(j)
/ log2 p(i, j), (10)

where p(i) is the probability that any user has rated item i, while p(i, j) is the probability that items i and j
are rated together. PMI ranges from -1 to 1, where -1 indicates that two items are never rated together, while
1 indicates that two items are always rated together. Based on point-wise mutual information, unexpectedness
metrics have two variations:

unexpco−occ1kam (i, u) = max
j∈Iu

PMI(i, j) (11)

unexpco−occ2kam (i, u) =
1

|Iu|
∑
j∈Iu

PMI(i, j) (12)

The content-based unexpectedness metric is based on item attributes and has two variations. Both variations
correspond to novelty metrics proposed by Vargas and Castells [27] (eq. 4, 5), where similarity is represented by
Jaccard similarity.

5.2 Full Metrics

Murakami et al. proposed a serendipity metric based on a primitive recommender system [20]:

sermur(u) =
∑
i∈Ru

max(Pru(i)− Primu(i), 0) · relu(i), (13)

where Pru(i) and Primu(i) is the confidence of recommending item i to user u by the examined and the primitive
models (RSs), respectively. The list of recommendations is represented by Ru, while the relevance of an item
corresponds to relu(i) (Table 3). A primitive RS is chosen arbitrarily and required to provide suggestions with
low serendipity. Furthermore, Murakami et al. proposed the rank sensitive metric [20]:

ser rmur(u) =
1

|Ru|

|Ru|∑
j=1

max(Pru(ij)− Primu(ij), 0) · relu(ij) ·
countu(j)

j
, (14)

where countu(j) is the number of relevant items for user u with a rank lower or equal to j. Later Ge et al. modified
proposed metric (13) [25]:

serge(u) =
1

|Ru|
∑

i∈(Ru\PM)

relu(i), (15)

where PM is a set of items generated by a primitive recommender model. Adamopoulos and Tuzhilin then
modified metric (15) by using an additional set of items [28]:

serad(u) =
1

|Ru|
∑

i∈(Ru\(Eu∪PM))

relu(i), (16)

where Eu is a set of items that matches the interests of user u.
Table 5 demonstrates the classification of papers in terms of primitive RS. The serendipity metric serad includes

popularity, similarity to a user profile and relevance. Other metrics serge, sermur and ser rmur would also capture
these components if the primitive model simultaneously captured user interests and the popularity of items.

De Pessemier et al. generalized the serendipity metric originally proposed in [7]. The metric is calculated as
follows [58]:

serpe(i, u) =
1 + nIu,max − nIu,f(i)

1 + nIu,max
· relu(i), (17)
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Table 5: Primitive systems used in serendipity metrics

Metric Article Primitive System

serad

Adamopoulos
and Tuzhilin [10,28]

Used two systems: one based on users’
profiles and another based on the
highest rating among the most
popular items

de Gemmis et al. [8]
Used two systems: popularity and
average rating

serge

Ge et al. [25]
Suggested a system based on
popularity

Lu et al. [41] Used a system based on popularity

Sridharan [37]
Used a systems based on popular
and highly rated items

sermur
Murakami et al. [20] Used models based on users’ profiles

Maksai et al. [39]
Used a systems based on popular
items

nIu,max = max
f∈F

(nIu,f ), (18)

where nIu,f is the number of items with attribute f from user profile Iu, while nIu,max is the maximum number
of items with the same attribute from the user profile. The attribute of item i is represented by f(i).

5.3 Analysis of the Evaluation Metrics

Both component metrics and full metrics have their advantages and disadvantages [3]. Component metrics could
be useful in measuring different aspects, such as popularity or similarity to a user profile. However, these metrics
could be mistaken. For example, an algorithm suggests items 1, 2, 3, and 4, where items 1 and 2 are irrelevant,
novel and unexpected, while items 3 and 4 are relevant but familiar and expected. The algorithm does not suggest
any serendipitous items, but it might have high novelty, unexpectedness and accuracy.

Full metrics measure serendipity as a whole, but they also have disadvantages. Most full metrics are sensitive to
primitive recommender systems [3,21,58]. By changing this parameter, one might obtain completely different and
even contradictory results. Full metrics also disregard multiple levels of serendipity. As the relevance component of
serendipity can be assessed using multiple judgments [59], one item might be more serendipitous than another. Full
metrics that are not based on a primitive recommender system often disregard some serendipity subcomponents.
For example, serpe(i, u) measures relevance and dissimilarity of items to a user profile and ignores unpopularity.

To answer RQ3, in this section we classified and reviewed proposed metrics to assess serendipity in RSs.
We did not include serendipity metrics designed to measure serendipity in particular domains such as friend
recommendation [12], as they might not be applicable in other domains.

6 Future Directions

In this section we are going to answer RQ4 by providing ways to improve serendipity in recommender systems
(RSs) that have not yet been widely adopted but that seem promising. Based on the reviewed literature, we are
going to indicate four directions: (1) popularity and similarity in RSs, (2) context-aware RSs, (3) cross-domain
RSs and (4) group RSs.

6.1 Popularity and Similarity in RSs

According to the reviewed literature, most novelty-oriented and serendipity-oriented recommendation algorithms
as well as evaluation metrics consider either popularity of items [8, 18, 41, 49] or their similarity to a user profile
[10,46,48]. One of the promising directions is the development of algorithms and evaluation metrics that capture
both subcomponents of serendipity.

18



As we mentioned in Section 2.2, popularity is an important subcomponent of serendipity, as a user is likely to
be familiar with globally popular items. A user might become aware of these items through different channels of
information, such as radio, TV or friends [11].

Similarity of recommended items to a user profile is also important, since a user tends to look for items similar
to what she/he likes, with the aim of finding more items she/he would enjoy. A user therefore might be aware of
items similar to his/her profile [27].

It is challenging to suggest items that are relevant, unpopular and dissimilar to a user profile for two reasons.
First, as most unpopular items are of low quality, a user is likely to consider them irrelevant [6]. Second, as a user
tends to enjoy items similar to what she/he already likes, by increasing the number of items dissimilar to the user
profile, an RS is likely to suggest items the user simply dislikes [42].

One of the ways to suggest items that are relevant, unpopular and dissimilar to a user profile is to combine each
of these requirements into an optimization objective. For example, Zheng et al. suggested an optimization function
of an SVD algorithm that combines relevance, popularity and similarity to a user profile [13]. Another way is to
split a recommendation algorithm into different stages and handle one requirement per stage. For example, Full
Auralist consists of three algorithms, each of which is responsible for one of the objectives [19].

6.2 Context-aware RSs

In this paper, we assume that user tastes do not change with time; neither do they depend on the environment.
However, many factors, such as weather, mood or location, can influence user preference for items [47,60,61]. For
example, a user might prefer listening to soft music in the evening and energetic music in the morning. Suggesting
songs according to the time of day would result in the improvement of user satisfaction.

Many recommender systems aim at predicting ratings users would give to items based on available ratings
[47, 61]. In contrast, context-aware RSs consider additional information, such as time, mood or location that
might be relevant for generating recommendations [61,62].

The definition of serendipity should include the context, as each component of the concept is context-dependent
[3]. An item that was serendipitous yesterday might not be serendipitous tomorrow. Serendipity thus could consist
of relevance, novelty and unexpectedness in a given context.

Leveraging the context can be beneficial for suggesting serendipitous items, as context-aware RSs aim at
suggesting items relevant to a user in a particular context. By using context, an RS can recommend items different
from what the user usually consumes but also relevant, since the suggestions would fit a particular situation. For
example, if a user who does not usually listen to rock and roll drives to Las Vegas, then the novel for the user
song “Viva Las Vegas” by Elvis Presley would likely be considered serendipitous.

6.3 Cross-domain RSs

Most RSs generate recommendations based on a single domain. In this paper, the term domain refers to “a set
of items that share certain characteristics that are exploited by a particular recommender system” [63]. Cross-
domain RSs take advantage of data from multiple domains [64]. For example, a cross-domain RS might leverage
information from a book domain to improve recommendation performance in a movie domain [65].

Several types of cross-domain RSs can improve the serendipity of recommendations:

• User modeling. By using information from multiple domains, this kind of system can infer items with which
users are already familiar. Leveraging additional information may also help discover additional interests of
users, which might result in serendipitous suggestions.

• Relevance. Use of additional domains may help to recommend more items relevant for a user, improving
serendipity, as relevance is one of serendipity’s components.

• Context. Additional domains may contain information regarding context [64,66]. By using this kind of data,
one may apply context-aware recommendation algorithms and improve serendipity, as indicated in section
6.2.

Cross-domain RSs can suggest combinations of items from different domains. For example, a user could receive
a recommendation of a venue to visit and a song to listen to in that particular venue. Combinations of items affect
the definition of the concept, as it is not clear whether a combination or each item in the combination has to be
novel, unexpected and relevant [3].
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6.4 Group RSs

Most recommender systems suggest items to an individual user [67]. However, in some cases it is important to
generate recommendations for a group of users. For example, a few friends might need to choose a movie to watch
together.

Suggesting items serendipitous to a group of users is more challenging than suggesting these kinds of items
to an individual, as items serendipitous to the group must be novel, unexpected and relevant to each individual
in the group. Items serendipitous to the group could be represented by an intersection of sets containing items
serendipitous to each user in the group. The cardinality of the intersection is less than or equal to the cardinality of
each user’s set of serendipitous items. The serendipity of a group recommendation could be assessed by measuring
serendipity for each user in the group.

The presence of different individuals in the group could be considered as the context of the recommendation.
An item not serendipitous to a particular user might become serendipitous when it is consumed around certain
individuals. To the best of our knowledge, efforts on recommendation of serendipitous items to a group of users
are very limited.

7 Conclusion

In this paper, we investigated serendipity in recommender systems (RSs) and answered our research questions.
RQ1. What is serendipity in recommender systems? What makes certain items serendipitous for particular

users?
In section 2, we defined serendipity as a property that reflects how good an RS is at suggesting serendipitous

items that are relevant, novel and unexpected. Novelty and unexpectedness require serendipitous items to be
relatively unpopular and significantly different from a user profile.

RQ2. What are the state-of-the-art recommendation approaches that suggest serendipitous items?
We overviewed serendipity-oriented algorithms and provided two classifications of them in section 3. The first

classification is based on the architecture of the algorithms, while the second classifies algorithms depending on
the phase of recommendation that is responsible for serendipity.

RQ3. How can we assess serendipity in recommender systems?
We overviewed evaluation strategies to assess serendipity in RSs in section 4.We discussed qualitative and

quantitative methods used in experimental studies related to serendipity.
We also presented two categories of serendipity metrics in section 5: component metrics and full metrics.

Component metrics measure serendipity components, while full metrics measure serendipity as a whole.
RQ4. What are the future directions of serendipity in RSs?
In section 6, we indicated four future directions of serendipity-oriented algorithms. The first direction indicates

that serendipity-oriented algorithms and evaluation metrics should take into account both item popularity and
similarity to a user profile. The second direction involves context-aware recommender systems. As context-
aware RSs can pick items based on the context rather than user tastes, this kind of system might suggest more
serendipitous items. The third direction includes cross-domain RS. Having information from additional domains,
an RS can infer which items are familiar to a user, suggest items relevant to the user and select items that fit the
context. The fourth direction is dedicated to group recommendations. It is difficult to suggest items serendipitous
to each user in a group of individuals, as the tastes of each user must be considered.

We hope not only that this paper will make the reader aware of serendipity and related concepts in RSs, but
also that it will help one conduct one’s own experiments by picking suitable algorithms, evaluation strategies
and metrics. We also hope that, as a result, the presented overview will contribute to the development and
improvement of recommendation algorithms focused on user satisfaction rather than on accuracy metrics.

Acknowledgement
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